欢迎光临石墨烯信息网
高品质石墨烯粉末、涂料、分散液为您提供石墨烯应用产品新信息咨询服务
全国咨询热线:17369004829

石墨烯是什么超导材料的应用于用途有哪些?

时间:2021-09-06 20:30:32 来源:石墨烯应用 点击:

  石墨烯超导材料

  石墨烯超导体也被称为超导材料,它一般是指在某一温度下,电阻为零的导体。在实验中,若导体电阻的测量值低于10的-25次方Ω,就可以认为电阻为零。超导体不仅具有零电阻的特性,另一个重要特征是完全抗磁性。

  超导体的应用可分为三类:强电应用、弱电应用和抗磁性应用。强电应用即大电流应用,包括超导发电、输电和储能;弱电应用即电子学应用,包括超导计算机、超导天线、超导微波器件等;抗磁性应用主要包括磁悬浮列车和热核聚变反应堆等。

  可以说,对超导体的研究在凝聚态物理领域甚至在整个物理学界中,都扮演着不可忽视的重要角色。

  而超导体的发现则来源于 1911 年荷兰科学家海克·卡末林·昂内斯的一次意外之举,1908年,得益于低温技术的发展,来自荷兰莱顿大学莱顿低温实验室的昂内斯教授以极大的精力改善了实验室装备,通过采用压缩氮气节流预冷氢、氢压缩节流预冷氦,最终用压缩节流的方法将氦液化,获得了4.2K的低温。成功将最后一种“永久气体”——氦气液化。

  永久气体是指临界温度小于-10℃的气体(新标准改为-40℃)。如:空气、氧、氮、氢、甲烷、一氧化碳等气体,氦气是最后一种被液化的永久气体,因为液化氦气需要非常低的温度。(只要低于一定的温度,就可以把气体转化为液体,同理,如果需要把液体转化为气体,就需要达到一定的高温)

  低温研究的突破,为超导体的发现奠定了基础。再接再厉的昂内斯在 1911 年发现,在4.3K低温以下,铂的电阻保持为一常数,而不是通过一极小值后再增大。

  因此昂内斯认为纯铂的电阻应在液氦温度下消失。为了验证这种猜想,昂内斯选择了更容易提纯的汞作为实验对象。首先,昂内斯将汞冷却到零下40℃,使汞凝固成线状;然后利用液氦将温度降低至4.2K附近,并在汞线两端施加电压;当温度稍低于4.2K时(相当于-269℃时,将开氏温度转变为摄氏度的公式就是开氏温度-273,因为绝对零度是-273度),汞的电阻突然消失,表现出超导状态,后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导效应。

  在他之后,人们开始把处于超导状态的导体称之为“超导体”。1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感应强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”,这也就是我们在一开始说的半导体具有完全抗磁性。

  由此,迈斯纳效应和零电阻现象是实验上判定一个材料是否为超导体的两大要素。超导已有了一些重要的实际应用,如用于医院里的核磁共振成像、高能加速器、磁约束核聚变装置等,但长期以来,制约超导体广泛应用的一个主要瓶颈是,最佳超导体需要用液氦或液氮加以冷却才能使用(往往冷却至- 250 ℃)。

  理论物理学家也在试图解开超导体的奥秘,直到1957年,三位物理学家提出BCS理论,近自由电子模型为基础,是在电子-声子作用很弱的前提下,解释常规超导体的超导电性的微观理论,并因此获得1972年诺贝尔物理学奖。

  美国物理学家麦克米兰还发现,BCS理论存在一个极限温度大约39K,高于这个温度后的任何物质,都不能形成超导态,这个发现被称为麦克米兰极限,这一极限打击了人们的信心,因为如此低的温度难以用于实际。

  因为人类追求的是实现常温超导,这样低的温度实在是难以在现实生活运用,难度太大,投入太高,目前科学家还在对高温超导领域进行探究,高温超导体并不是大多数人认为的几百几千的高温,只是相对原来超导所需的超低温高许多的温度,不过也有零下几百多摄氏度。而在人类所研究的超导中温度算提高非常多,所以称之为高温超导体。

  1987年,物理学家吴茂昆和朱经武在钇钡铜氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。

  这是史上第一次超越液态氮沸点“温度壁垒”而将超导温度从30K提升到90K(摄氏零下183度)以上,突破自1911年后七十多年的物理学研究瓶颈,为临界温度高于77K的材料称为高温超导体下了定义,此后,很多科学家开始尝试打破麦克米兰极限,努力寻求“高温超导体”。

  另外这项实验采用较为廉价的液氮将极大地降低超导的应用成本,使得超导大规模应用和深入科学研究成为可能。

  目前,材料达到超导状态的最高温度约为133K,而这种材料就是铜氧化物,于20世纪80年代被发现。但是,对于氧化物类的高温超导体,由于微观结构非常复杂,结构往往难以调整,很难进行微观尺度的研究,所以难以发现其超导机制;而超高压类的超导体,研究起来更难,也无法实现实际应用。

  如果有哪种材料能够在室温下表现出超导电性,就可以为能量传输、医用扫描仪和交通领域带来革命性的改变。

  但是科学院一直没有取得突破,直到这位来自中国的 22 岁少年—的出现。出生于1996年,是一位标准的90后,11岁的他曾用短短三年的时间,先后读完小学六年级、初中和高中的课程,并且精通中英日三国语言。在2010年,才14岁的就以669的高考成绩被中科大少年班录取。进入了“严济慈物理英才班”。

  自小就特别喜欢捣鼓电子产品,深圳电子数码产品丰富,给予了他广阔的自由发挥的空间,他经常跑去深圳的电子市场,一待就是一整个下午。动手能力超强的他更是自小就喜欢搞实验,曾因硝酸银太贵,买了硝酸偷偷把母亲的银镯子放进去,合成硝酸银。

  而中科大毕业之后,18岁的进入了麻省理工攻读博士进行更加深入的学习研究,去向更高的学术殿堂进发,在进入麻省理工之后,一直从事石墨烯的研究。

  石墨烯是一种以碳原子组成的六角形呈蜂巢晶格的平面薄膜,是一种厚度只有一个碳原子大的二维材料。自石墨烯被发现以来,其诸多优异属性一直令人印象深刻:比如它比铁还要坚固,比铜的导电性还要好等等,还具有透光率、机械强度、稳定性等等性质,在各种不同的领域都发挥着效用,比如移动设备、航空航天、新能源电池领域等。

  石墨烯超导材料结构图在之前,科学家就已经发现了石墨烯的超导现象,日本东北大学和东京大学的研究人员在2016年得到了一个使他们兴奋的出人意料之外的结果。他们用两片石墨烯构建了一个类似夹心饼干似的结构,在石墨烯片中插入了一些钙原子之后惊奇地发现,这个结构实现了超导性!也就是说,如此构建的材料可以实现电阻为零。

  但是的研究最大的意义在于:双层石墨烯仅仅只是做了简单的旋转,就从绝缘体变成了超导体,这样的发现可以说是非常不可思议的。

  团队在研究之中发现,堆叠的双层石墨烯中,电学行为对原子排列非常敏感,影响层间电子移动。对于物理学家而言,电学行为通常是由能量主导。而在这项研究中,单层石墨烯内原子间电子移动有关的能量在eV量级,而在层间的电子移动涉及的能量量级最多在几百meV。要想解开这个谜题,对称性是关键!所以团队尝试将两层石墨烯片叠加起来,两层的晶格取向互相旋转一个角度。

  

免责申明:文章内容来源于网络如有疑问请联系客服删除

石墨烯

电话:17369004829

QQ:182379454

电邮:182379454@qq.com

地址:四川省德阳市旌阳区工农村

采购:石墨烯是什么超导材料的应用于用途有哪些?
在线客服
联系方式

热线电话

18781044436(微信同号)

上班时间

周一到周五

公司电话

17369004829

二维码
线